Panel For Example Panel For Example Panel For Example

V-Cut vs Tab-Routing: Pros and Cons of PCB Panelization Methods

Author : Moby May 21, 2025

When it comes to mass-producing printed circuit boards, panelization plays a critical role in manufacturing efficiency, cost control, and product quality. Among the various panelization techniques available, V-Cut (V-Scoring) and Tab-Routing are the two most widely used methods. Each method has its own set of advantages and limitations, and choosing the right one can significantly impact the final outcome of your project. In this article, we’ll explore the key differences between V-Cut and Tab-Routing, along with their respective pros and cons, to help you make an informed decision.

 

V-Cut compare with Tab-routing

 

What Is PCB Panelization?

PCB panelization refers to the process of grouping multiple individual PCBs into a single panel during manufacturing. This enables automated assembly, simplifies handling, and reduces production costs. After PCB assembly, the individual boards are separated (depanelized) using a mechanical method based on the chosen panelization strategy.

 

 

What Is V-Cut (V-Scoring)?

V-Cut involves cutting V-shaped grooves along the top and bottom surfaces of a PCB panel, leaving a thin layer of material in the middle. These grooves act as break lines, making it easy to snap individual boards apart after assembly. The cuts are usually straight lines, either vertical or horizontal, and the boards are separated by applying pressure along the score lines.

Pros of V-Cut:

  • Higher Panel Density: Since V-Cut doesn’t require space for tabs, boards can be placed closer together, optimizing the use of panel area.
  • Lower Cost: It is generally more cost-effective due to simpler tooling and faster cutting processes.
  • Faster Depanelization: Boards can be separated quickly with minimal mechanical effort.
  • Ideal for Straight-Edged Boards: Best suited for rectangular or square boards with straight edges.

Cons of V-Cut:

  • Limited to Straight Lines: Can’t be used for irregular or curved board shapes.
  • Mechanical Stress: Breaking the boards apart can cause stress along the edges, potentially damaging components placed too close to the break line.
  • Rough Edges: The break line may leave slightly jagged or uneven edges, requiring post-processing in sensitive applications.

V-cut line in PCB design

 

What Is Tab-Routing?

Tab-Routing involves creating small tabs between individual PCBs within a panel. These tabs typically include breakaway holes (mouse bites) that make the separation process easier. A routing bit cuts around the PCB outline, and the tabs hold the boards in place until final separation.

Pros of Tab-Routing:

  • Supports Complex Shapes: Suitable for non-rectangular and irregular PCB outlines.
  • Less Mechanical Stress: Offers a cleaner and more controlled break, reducing the risk of component or board damage.
  • Smooth Edges: Post-depanelization edges are usually cleaner, which is ideal for high-precision applications.

Cons of Tab-Routing:

  • Wastes Panel Space: Tabs and routing paths require additional clearance, reducing panel utilization.

  • Higher Cost: More complex tooling and longer routing times increase the custom PCB cost.

  • Slower Depanelization: Requires manual or semi-automated tools (like depaneling routers or punching machines) to remove the boards, which takes more time.

Stamping hole in PCB design

 

Choosing the Right Method

Choosing between V-Cut and Tab-Routing depends on your specific project requirements:

  • Board Shape: Use V-Cut for simple, straight-edged designs; choose Tab-Routing for complex or irregular shapes.
  • Component Placement: Avoid placing components too close to V-Cut lines. Tab-Routing provides better protection in densely populated PCBs.
  • Production Volume: V-Cut is often favored in high-volume runs due to its speed and cost-effectiveness.
  • Edge Quality Needs: If aesthetics and edge smoothness are critical, Tab-Routing is the better choice.
  • Panel Efficiency: For maximum board density, V-Cut offers better panel utilization.

V-cut compare Tab-routing diagram

 

 

Hybrid Approach

In some cases, a hybrid approach that combines both V-Cut and Tab-Routing may be used to optimize manufacturing. For example, straight edges may use V-Cut while curved areas are supported by Tab-Routing. This provides a balance between cost, edge quality, and shape flexibility.

 

 

Final Thoughts

Both V-Cut and Tab-Routing are reliable panelization techniques, each with its own strengths and weaknesses. Understanding your product's mechanical, aesthetic, and cost requirements will help you choose the best method. By collaborating closely with your PCB manufacturer, you can design a panelization strategy that ensures smooth production and high-quality results.

 

 

Recommended Reading
Is PCB Length Matching Possible Without Design Software?

Is PCB Length Matching Possible Without Design Software?

January 23, 2026

Learn if PCB length matching is possible without design software. This guide for hobbyists covers manual techniques to ensure signal integrity, with practical tips for hand design and timing accuracy in your projects.

Article
Differential Signaling: A Powerful Technique for Crosstalk Reduction

Differential Signaling: A Powerful Technique for Crosstalk Reduction

January 23, 2026

Learn how differential signaling reduces crosstalk in high-speed PCB designs. Understand its principles, benefits, and practical tips for achieving signal integrity with balanced lines and differential pairs in your projects.

Article
PCB Trace Design: The Ultimate Guide for Beginners

PCB Trace Design: The Ultimate Guide for Beginners

December 15, 2025

Learn PCB trace design with this ultimate beginner's guide. Master trace width, routing, vias, impedance, and more for reliable circuit boards.

Article
Mastering Solder Mask: Design Rules and Best Practices for Reliable PCB Manufacturing

Mastering Solder Mask: Design Rules and Best Practices for Reliable PCB Manufacturing

December 15, 2025

Master solder mask design with rules for clearance, web, pads, colors, and vias to ensure reliable PCB manufacturing. Get expert tips now!

Article
Serpentine Routing in PCB Trace Design: Length Matching, Signal Skew, and Layout Considerations

Serpentine Routing in PCB Trace Design: Length Matching, Signal Skew, and Layout Considerations

December 12, 2025

Explore serpentine routing in PCB design, covering length matching, signal skew, and layout tips for optimal signal integrity and performance.

Article
DIY PCB Trace Etching: A Beginner's Guide to Creating Your Own Boards

DIY PCB Trace Etching: A Beginner's Guide to Creating Your Own Boards

December 12, 2025

Learn DIY PCB trace etching with this beginner's guide. Create homemade boards using ferric chloride, toner transfer, and safety tips.

Article