Drones Can Be Powered Wirelessly by New Technology
Published on 1/21/2017 6:28:55 PM
Description
<style>.e_editor{font:14px/24px Arial,'microsoft yahei','Times New Roman','b8bf53';}.e_editor div,e_editor p,e_editor td,e_editor th,e_editor li{font-weight:inherit;font-size:inherit;font-style:inherit;font-family:inherit;}.e_editor ul{margin:-10px 0 20px;}.e_editor li{padding:5px 0;}.e_table{width:96%;border-collapse:collapse;empty-cells:show;}.e_table th,.e_table td{padding:5px;border:2px solid #eee;}.e_img{padding:10px 0;text-align:center;}.e_p{line-height:20px;padding:0 0 20px;text-indent:0em;}</style> <div class="e_editor"> <div class="e_p"> Research from the Imperial College of London may help conquer the classic drone conundrum—how can you power a drone without weighing it down with a battery? </div> <div class="e_p"> Longer Drone Flight Times (without Additional Weight) </div> <div class="e_p"> Most drones you can buy normally have an operation time of around 10 to 40 minutes depending on the size of the drone and the capacity of the battery. Ideally, one wants to extend the flight operation time without adding on too much weight to the drone, which would result in a shorter flight time. This is a problem that drone operators have been facing for quite some time. It's also interested some researchers in finding a solution. </div> <div class="e_p"> Dr. Samer Aldhaher, a research associate at the Imperial College of London working with the Wireless Power Lab has been researching wireless power transfer systems with the aim of powering a drone through wireless charging. It isn't magic; the drone receives the power required to take off, operate, and charge itself from a charging block directly beneath it. His paper, published by IEEE and co-written by David C. Yates and Paul D. Mitcheson, details the construction of the Class EF<sub>2</sub> inverter used in the tech. </div> <div class="e_p"> While this is a huge leap in what could be the next powering method of flying drones, there are still quite a few missing pieces to get this technology working on a greater scale. </div> <div class="e_p"> After watching the video, you might notice that the drone is restricted to only hovering over the wireless power transmitter below it. Dr. Aldhaher has figured out how to get it operational wirelessly, but only for about five inches above the power transmitter base. If the drone flies out of the transmitting range, it will lose its power and shut off. </div> <div class="e_p"> Nevertheless, this is a spectacular feat of overcoming the need for on-board batteries. Below is a picture of Aldhaher's setup of both the drone and the power transmitter. </div> <div class="e_p"> The EF Inverter </div> <div class="e_p"> Now that you have a basic understanding of the concept, let's look a little further in-depth of how this concept actually works. </div> <div class="e_p"> The transmitting loop that is labeled as "transmitter PCB coil" is actually etched onto a printed circuit board, hence the name PCB. From an outlet or power generator, power is converted into high-frequency alternating current (AC) by the transmitter. From there, this high-frequency AC flows into the transmitter coil and will generate an oscillating magnetic field. </div> <div class="e_p"> Here is the awesome part: The magnetic field is transferred into the air and will induce into the receiver coil. <www.allaboutcircuits.com an-overview-of-wireless-charging="" technical-articles="">Once the energy from the magnetic field induces AC into the receiver coil, it is then that it can be converted back into direct current (DC) by the receiver. The DC power can then provide power to the device—the drone, in this case. </www.allaboutcircuits.com> </div> <www.allaboutcircuits.com an-overview-of-wireless-charging="" technical-articles="">Copper is an excellent conductor of electricity because the valence electrons are free and repel each other very strongly, enough that it will cause repulsion of other electrons. Essentially, the electricity is forced down the piece of copper. </www.allaboutcircuits.com> <div class="e_p"> While it won't allow you to fly a far distance, this technology opens up a new window of opportunity for what's to come. Despite only flying five inches above the power transmitter, there's a lot of complex circuitry infrastructure involved in getting this drove to fly without requiring onboard batteries. </div> <div class="e_p"> If strides in wireless charging continue on this level—from both academics like Professor Aldhaher and from drone enthusiasts—I'm sure it won't be long before this technology at our disposal. </div> </div>
312
comment
All comments
Eng.Mohamed El sehrawy
3061
0
312
Rules about cashback: 1. Valid time: ALLPCB cashback activity will end on April 1st. 2. Capped amount: The capped amount of cashback for each account is $5,000. Each order can get a maximum of $2,000 cashback. That means every author can get $5,000 max. 3. Cashback range: The cashback activity only covers the corresponding PCB order. The order amount for other combined payment products will be invalid. 4. Clicking your own promotional link will be invalid. The same email address, shipping address, contact information, and phone number are all recognized as the same account. 5. ALLPCB has the final interpretation right of the cashback activity.
ALLPCB will donate 2% to the author for this promotion link.