World's Fastest PCB Manufacturing
My Message
Suggestions
Account

Get started now

Log In

or

Sign Up

My ALLPCB

My Orders Shipping Address Balance Account Settings My SNS Profile
0
  • Home
  • Instant Online Quote Alternate Text
    • PCB Instant Quote
    • PCB Assembly Quote
    • SMD-Stencil Quote
  • PCB Assembly
  • PCB Capabilities
  • Feedback
  • Resources
    • Sponsorship
    • PCB Softwares
    • Units Conversion
    • FAQ
  • About Us
    • About Us
    • About Us
    • Why Us
    • Contact Us
    • News
Log In Sign Up
  • Home
  • Instant Online Quote
    • PCB Instant Quote
    • PCB Assembly Quote
    • SMD-Stencil Quote
  • PCB Assembly
  • PCB Capabilities
  • Feedback
  • Resources
    • Sponsorship
    • PCB Softwares
    • Units Conversion
    • FAQ
  • About Us
    • About Us
    • Why Us
    • Contact Us
    • News
service@ALLPCB.com
Thank you very much for your valuable suggestion!
We will solve it as soon as possible!

The Basic Analysis of a Quantum Processor

1/27/2017 1:36:41 PM

First, let’s start by analyzing the concept and components of classical computing. Classic computers will obey the principles of classical physics. A classical computer will perform operations using information stored in the form of bits; whose value is either zero (0) or one (1). Now, when we program a classical computer; we will have a CPU which has an input, an output, and software which regulates the CPU. This is called a Turing Machine, which also happens to be the substructure of your cell phones and laptops computing power. In spite of the relative simplicity, a Turing machine may be constituted to simulate any given computer algorithm’s logic. Unfortunately, even as classical computers have become faster and more concise; they are unable to solve arithmetic like factoring massive integers effectively.
In quantum computing, instead of having information stored in the form of bits, we have a new unit called a qubit or quantum bit, which carries quantum information. In a classical system a bit can only be in two positions; either up or down (commonly represented as a zero or one). In quantum computing, the qubit can be in any superposition of both at the same time.
Qubits can be in the in the given states |0} and |1} (note: 0 and 1 are not always the given values for a qubit, various others may be used but with the same result) as well as any addition of the two; which will yield another valid quantum state x|0} + y|1} where the two variables x and y represent complex numbers.
With this basic knowledge, we can analyze the processor inside a quantum computer; specifically the D Wave quantum computer.
The Elementary Units of Quantum Computing
In the introduction, we covered how we can represent qubits symbolically as a 0 or 1, as well as a superposition
of both of the states. We will now cover how qubits are constructed as well as their appearance.
In conventional computing, we are using the CMOS transistors to encode bits of information. This is done by regulating the voltage to transistors that are fitted with a bus to determine whether the state is a 0 or 1.
Quantum transistors are somewhat similar, yet vastly different than our current CMOS transistors. Interference refers to the actual electrons, and how they act as waves that create interference patterns to cause quantum effects to occur. This is the basis of quantum computing (basically a quantum transistor.) The electron behaves as a qubit due to the nature of the material called niobium; which is what the gold loop is made of. When the niobium is cooled to reach its critical temperature; it will manifest the qualities of quantum mechanics.
Our classic transistors will encode in two states by regulating voltages. The SQUID will encode the two states into magnetic fields which are designated down or up. The two states are given as -1, +1 in which the qubit can be in superposition of both. This is done by combining the Josephson Effect (or the phenomenon of supercurrent) and the quantization of flux. BCS pairs are tunneled through a weak link (which in this case would be a weak insulating barrier) between the niobium. For each current below a given critical value, a supercurrent will be established between the two superconductors and will yield no voltage across the Josephson junction. Any time a current is larger than the critical value, a voltage will be read across the junction.
The Programming
The qubits need to be linked together in a fashion that is capable of relaying information. The qubits are attached together by couplers which are also made from superconducting material. When we combine the qubits and couplers together we are capable of creating a programmable structure of quantum mechanics. 
The superconducting qubit is formed into rectangles; with each of the dots representing a coupler. These couplers would in a sense couple the data or variables in an equation making it more efficient to solve.
Processor Operation
Unfortunately, there are more components needed to create a functional quantum processor. Much of the structure and circuitry that outlines the qubits are composed of switches that function by the Josephson Effect. This circuitry directs the information from the qubits into various memory components which store the data into a magnetized medium. Each of the qubits is equipped with read-out apparatuses. The read-out will take the vector from the coherent superposition state and project it into a pure zero or one state while losing the phase information. The probability of projection into zero or one state is taken by repeating the procedure many times and averaging the result. These apparatuses will be inoperative while calculations are being made for the qubits to prevent the quantum behavior from being changed. Once calculations have been completed, and after each qubit has established itself into a classical state, the recorded data is converted into a chain of classical bits which can then be read by the user.
The structure of the processor is different from the typical silicon processor in that each qubit has individual memory devices instead of large cache areas.
Quantum processing has been speculated to be able to utilize computing power massive orders of magnitude more than our conventional computers. If we take a coherent state qubit system with X qubits then we can superpose 2X different sequences of bits (remember that each additional qubit will yield twice as many values, which is where the 2X comes from.) Now to equate that to conventional computers we take the difference in energy levels of the qubit, in this case, it happens to be in the gigahertz region; which gives us 2X gigahertz. This means with 20 qubits a quantum processor could process approximately 2^20 operations per second. We can conclude that quantum processors have a substantially greater potential than that of conventional computers.
Recently the Dwave 2X system was manufactured and is considered to be the most powerful quantum computer to date. It happens to operate at 0.015° above absolute zero, and its processor generates no heat. The system is comprised of over 1000 qubits that operate near absolute zero to generate a massive amount of quantum effects. To put this into perspective, the system can search through 2^1000 solutions at once; which is more than every particle in the universe. The Dwave 2X has a rumored list price north of $15,000,000, and has been released for general availability.
  • 2132
  • 1
  • 389
Post Comment

    Berg

    1/29/2017 1:36:41 PM

    I think you are a genuis. The idea in your post is quite helpful and lights me. I have been puzzled for a long time in my new project.

    You might like

    Vratislav.michal

    • Threads

      3

    • Following

      0

    • Followers

      0

    PCB Prototype

    PCB Instant Quote

    x mm

    Quantity

    Quote Now

    PCB Assembly

    SMT-Stencil

    • 12
    Products & Service
    PCB Capabilities
    Aluminum PCB Service
    PCB Assembly Service
    SMT-Stencil
    Quotation & Feedback
    Online Auto-Quotation
    PCB Assembly Quote
    Quote by Salesperson
    Customer Reviews
    Customer Support
    FAQ
    Community
    Sponsorship
    Referral Program
    About Us
    About Us
    Why Us
    Contact Us
    News
    Resource Details
    PCB Software
    Units Conversion
    service@allpcb.com central_support@allpcb.com
    Follow Us:
    Facebook YouTube Twitter Tumblr YouTube
    Certification: Certification
    Our Preferred Partners: Our Preferred Partners

    Please send Gerbers to service@ALLPCB.com for quotation © Label_AllpcbcomallRightsReserved Privacy PolicySitemap

    Secure Site by GoDaddy.com This site has earned the McAfee SECURE certification.